Analysis of Science Learning Based on the Experiential Learning Model: Literature Review

Dewi Masyitha1*, Suyanta2, Sabar Nurohman1, Sri Rejeki Dwi Astuti2

1 Department of Masters of Science Education, Faculty of Mathematics and Science, Yogyakarta State University, Indonesia.
2 Department of Chemistry Education, Faculty of Mathematics and Science, Yogyakarta State University, Indonesia.

Received: May 25, 2023
Revised: June 14, 2023
Accepted: July 25, 2023
Published: July 31, 2023

Corresponding Author:
Dewi Masyitha
dewimasyitha.2021@student.uny.ac.id

Abstract: The purpose of this study was to review various articles that have been published so that it can be seen the various advantages and disadvantages of the model in terms of the method, which can be used as the right choice to be carried out as the next study. The method used in this study is the Systematic Literature Review (SLR) method with the data used is secondary data obtained indirectly using articles from several indexed journal databases. The steps of the literature review consist of: First the planning stage, at this stage is the formulation and determination of the problems raised in this research. Second, the review stage at this stage is a search for articles from various journal databases. Third, in the document documentation stage, the articles are then grouped according to the type of journal indexer. In this step, all existing articles are selected and then interpreted by analyzing 20 articles. The results obtained can be used as a guide for educators and readers to apply and develop experiential learning models by considering the various needs of each learner. Recommendations for further research in order to be able to examine the experiential learning model in terms of the method aspects associated with learning media.

Keywords: Experiential learning models; Literature review; Science learning

Introduction

In general, education is one measure of the progress of a country. Developed countries are characterized by their level of education and the ability of their people to keep up with developments in science and technology. School as a place of education for the community plays an important role in supporting the progress of the country. At school, people can learn many things, such as acquiring and improving their skills (Susilawati et al., 2021).

One of the subjects prepared by schools throughout Indonesia is Natural Sciences (IPA). As a natural science product, it means that a science that studies phenomena that occur in nature will produce theories, laws, principles and facts. The second part of IPA as a process means observing, carrying out experiments, interpreting and concluding a knowledge discovery. Third, IPA is a scientific attitude which includes curiosity, objectivity and thoroughness in doing things (Fitriani et al., 2020; Hastuti et al., 2018).

Science learning is currently very important, meaning that learning success must be increased in the learning process. One possible effort is learning that can involve students through direct experience to improve students' current skills. The learning model that allows students to be directly and actively involved in making experience the basis for acquiring knowledge is the experiential learning model. Experiential learning is a learning model that uses experience as a learning tool, examines experience, concludes and changes experience through direct experiments.

One of the efforts in the field of education is to make various efforts to improve learning in schools. Among the efforts made are carrying out learning using various innovative learning models, the use of interactive media, and various other learning models (Walangadi & Umar, 2021).

How to Cite:
The application of the experiential learning model in science learning in particular shows a wide variety of results obtained. So the author reviews several articles aiming to review various articles that have been published so that the various advantages and disadvantages of the model can be seen in terms of the method, which can be used as the right choice to be carried out as the next study.

Method

The method used in this study is the Systematic Literature Review (SLR) method which aims to identify, review, and evaluate relevant research so as to answer research questions that have been determined (Triandini et al., 2019). This study consisted of several stages, namely problem formulation, literature search, inclusion and exclusion criteria determination, selection of articles obtained, data presentation, and drawing conclusions.

The data used is secondary data obtained indirectly using articles from several indexed journal databases. The steps of the literature review consist of: First the planning stage, at this stage is the formulation and determination of the problems raised in this research. Second, the review stage at this stage is a search for articles from various journal databases. Third, in the documentation stage, the articles are then grouped according to the type of journal indexer. In this step, all existing articles are selected and then interpreted.

Based on the findings, it can be used as a basis for answering research questions. A literature review is carried out by evaluating previous research with the keywords experiential learning and experiential learning models. The article review criteria in this study are in Table 1.

Table 1. Article Review Criteria

<table>
<thead>
<tr>
<th>Publication Type</th>
<th>Articles published in journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>Model experiential learning, Experiential learning</td>
</tr>
<tr>
<td>Journal Specifications</td>
<td>International journal indexed by Scopus</td>
</tr>
<tr>
<td>Publication Year</td>
<td>National Journal indexed by Sinta 2018-2023</td>
</tr>
<tr>
<td>Field</td>
<td>Natural sciences, Biology, Chemistry, Physics</td>
</tr>
<tr>
<td>Access</td>
<td>Open access</td>
</tr>
<tr>
<td>Number of articles</td>
<td>20</td>
</tr>
</tbody>
</table>

Result and Discussion

The research results in this literature review are in the form of analysis and summary of article data with various indexed journal database sources. Based on general search results, 20 articles were obtained which are presented in Table 2.

Table 2. General Article Search Results

<table>
<thead>
<tr>
<th>Index & Years of Publication</th>
<th>Journal Name</th>
<th>Article Title</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scopus/Q3/2019</td>
<td>Decision Sciences: Journal of Innovative Education</td>
<td>A Meta-Analysis of the Relationship Between Experiential Learning and Learning Outcomes</td>
<td>1</td>
</tr>
<tr>
<td>Scopus/Q3/2018</td>
<td>Bioscience: Journal of College Biology Teaching</td>
<td>The Value of Experiential Learning: a Case Study with an Interdisciplinary Study Abroad Course</td>
<td>1</td>
</tr>
<tr>
<td>Sinta 3/2019</td>
<td>Indonesian Journal of Conservation</td>
<td>Keefektifan Model Experiential Learning Terhadap Motivasi Dan Hasil Belajar IPA</td>
<td>1</td>
</tr>
<tr>
<td>Sinta 3/2019</td>
<td>Edu-Sains</td>
<td>The Development of e-Modules Based on Experiential Learning Models on Environmental Pollution Materials for Class VII Middle Schools</td>
<td>1</td>
</tr>
<tr>
<td>Sinta 3/2017</td>
<td>Jurnal Wahana Pendidikan Fisika</td>
<td>Penerapan Model Experiential Learning Untuk Meningkatkan Keterampilan Berpikir Kritis Siswa</td>
<td>1</td>
</tr>
<tr>
<td>Sinta 2/2022</td>
<td>NSER: Natural Science Educational Research</td>
<td>Implementasi Model Experiential Learning Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa</td>
<td>1</td>
</tr>
<tr>
<td>Sinta 3/2021</td>
<td>JPPIPA (Jurnal Penelitian Pendidikan IPA)</td>
<td>Peningkatan Keterampilan Proses Sains Siswa melalui Model Experiential Learning pada Materi Pencemaran Lingkungan</td>
<td>1</td>
</tr>
<tr>
<td>Scopus/Q4/2020</td>
<td>JAM: Jurnal Aplikasi Manajemen</td>
<td>The Effect Of Experiential Learning On Attitudes And Intention: An Experimental Design</td>
<td>1</td>
</tr>
</tbody>
</table>
Learning IPA with Models Experiential Learning

Model experiential learning used in science learning can activate students in constructing or compiling knowledge, skills, and values through direct experience so that learning becomes meaningful (Fadieny & Fauzi, 2021).

Learning that uses models experiential learning in a module produces positive initial reactions with enthusiasm from students, but the drawback is that there are several student characters who have not been able to balance the learning process using this model (Widiastuti & Budiyanto, 2018).

Learning by using experiential learning produce students' ability to solve problems with high and low adversity intelligence (Hulaikah et al., 2020). Differences in intelligence are also part of the results obtained by using various learning models, it is sought that learning models can have a positive impact on all students.

Research that applies model steps Experiential Learning, improve science learning outcomes consisting of planning, implementation, observation, and reflection stages. The results show an increase in learning outcomes however, there are several obstacles to using this model, namely students who are less active in answering questions, have difficulty understanding the material, are embarrassed to show the results of discussions, lack of focus in learning, and have difficulty expressing opinions in clear language so the solution is applied to students who are active and who can provide more supervision during discussions (Haryanti et al., 2019).

The effectiveness of science learning by using models experiential learning can also increase student motivation while in class in learning that provides direct experience (Zuhryzal & Fatimah, 2019).

Judging from the various advantages and disadvantages of the learning model experiential learning that have been studied based on the conclusions of the review results can be used as a guide for educators and readers to apply and develop learning model experiential learning taking into account the various needs of each learner. The method in this learning model is able to develop the potential that exists in students by providing direct experience to be able to solve a problem that is around them through natural science material.
Conclusion

Learning IPA using models experiential learning with several steps of real experience that can improve the affective, psychomotor and cognitive abilities of students. Producing learning that is more effective and meaningful, based on the results of the literature review can be used as a guide for teachers and also readers who can provide references to the use of learning models experiential learning. Recommendations for further research in order to be able to review the model experiential learning viewed from the aspect of the method associated with learning media.

Acknowledgments
Thanks are conveyed to Prof. Dr. Suyanta, M.Sc., Dr. Sabar Nurohman, M.Pd., and Mrs. Sri Rejeki Dwi Astuti, M.Pd., who have provided support in writing this article so that the results of this study can be put down in written form and informed to Education researchers in Indonesia.

Author Contributions
The authors in this research are divided into executor and advisor.

Funding
This research received no external funding.

Conflicts of Interest
The author declares no conflict of interest in this research.

References

