The Influence of Inquiry Training Learning Model Based Design Thinking on Creative Thinking Skills of Indonesia Students: Systematic Literature Review and Meta-analysis

Yuyun Suprapto*1, Asmawati2, Abdul Rahman3, Wasito Utomo1, Tomi Apra Santosa4

1Politeknik Penerbangan Surabaya, Surabaya, Indonesia.
2IAIN Palangkaraya, Palangkaraya, Indonesia.
3Universitas Sebelas Maret, Surakarta, Indonesia.
4Akademi Teknik Adikarya, Jambi, Indonesia.

Received: October 18, 2023
Revised: November 21, 2023
Accepted: December 25, 2023
Published: December 31, 2023

Corresponding Author:
Yuyun Suprapto
yuyunatkpsby@gmail.com

DOI: 10.29303/jppipa.v9iSpecialIssue.6212
© 2023 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: The purpose of this study is to determine the influence of the design thinking-based inquiry training learning model on the creative thinking skills of students in Indonesia. This type of research is a type of systematic literature review (SLR) research and meta-analysis. The sources in this study analyzed 13 studies obtained through the databases of Google Scholar, Education Resources Information Center (ERIC), Wiley, PLoL ONE, Taylor of Francis, and IEEE published from 2019-2023. Analyze data with the help of JSAP applications. The results concluded that the summary effect size value (rE = 0.84; p < 0.001) high effect size category. This finding shows that the inquiry training learning model based on design thinking has a high positive effect on the creative thinking ability of students in Indonesia.

Keywords: Creative thinking; Design thinking; Effect size; Inquiry training learning

Introduction

Creative thinking skills are a skill that students must have to face the industrial revolution 4.0 (Nasution et al., 2023; Ritter et al., 2020). Creative thinking skills help students develop new ideas or ideas in solving a problem (Kartikasari et al., 2022; Suwendra, 2023; Suryandari et al., 2021; Tabieh & Hamzeh, 2022). Creative thinking skills assist students in developing innovations in learning (Tok et al., 2022; Hews et al., 2023; Yildiz & Yildiz, 2021; Sur & Ateş, 2022). In addition, creative thinking skills play an important role in making a decision in solving a problem (Sulistiyarini et al., 2022; Silva et al., 2022; Siburian et al., 2019). Students who have creative thinking skills can create new things that are useful in life (Attanurakkee & Dhammabhisamai, 2022; Yustiana el al., 2022; Saregar et al., 2021). Therefore, creative thinking skills provide positive benefits to the development of students' cognitive functions in learning activities.

But in reality, students' creative thinking skills in Indonesia are still relatively low (Utomo et al., 2014; Nurtamam et al., 2023; Made et al., 2020; Ichsan et al., 2023). The results can be seen in the results of the 2018 Programe For International Student Assessment (PISA) survey, the science literacy of Indonesian students was ranked 71 out of 78 member countries (Elfira et al., 2023; Utomo et al., 2023; Zulkifli et al., 2022; Supriyadi et al., 2023; Sofianora et al., 2023). Similarly, the results of TIMSS (Trend In International Mathematic and Science Study) research in 2015, students' ability to think creatively and critically in the fields of science and mathematics was ranked 69 out of 79 participating countries (Formatting Citation). The low creative thinking skills of students can also be seen in learning activities that are only centered on teachers (Adiilah &
Haryanti, 2023; Dwi et al., 2022; Jumadi et al., 2021), so students find it difficult to understand the subject matter. Learning activities that do not involve active students (Dominggus et al., 2021; Rahman et al., 2023; Hariyadi et al., 2023) and the selection of learning models that are lacking not to encourage creative thinking skills (Atmojo & Sajidan, 2020).

The inquiry training learning model is a learning model that can improve creative thinking skills in learning activities (Inati et al., 2016). The inquiry training learning model is a learning model that trains students to be directly involved in carrying out activities scientifically (Yuliska et al., 2020). The inquiry training learning model can help students improve problem-solving skills (Turnip et al., 2016; Gillani, 2010). Furthermore, the inquiry training learning model can be combined with design thinking learning. Design Thinking is a learning concept that involves students stimulating the thought process and periodication in creating a positive change (Rauth et al., 2010; Dorland, 2023; Ladachart et al., 2022). Design thinking can help students learn actively and creatively in learning (Pratomo et al., 2021).

Research Andrini (2016) inquiry learning model can improve student learning outcomes. Research (Formatting Citation) inquiry training learning model can develop Shiva science literacy. Research by Zulyusri et al. (2023) design thinking-based learning can improve students' critical and creative thinking skills. The gap in research is that many studies on inquiry training have not found research related to the effect of size model inquiry training learning based one sign thinking. Based on these problems, this study aims to influence the design thinking-based inquiry training learning model on the creative thinking skills of students in Indonesia.

Method

This research is a type of systematic literature review (SLR) research and meta-analysis. This study aims to determine the influence of the design thinking-based inquiry training learning model on the creative thinking skills of students in Indonesia. According to (Borenstein et al., 2009) Meta-analysis research is carried out with steps consisting of determining inclusion criteria; collecting and coding data, and conducting statistical analysis.

Eligibility Criteria

The process in this study has several inclusion criteria, namely research published from 2019-2023; data comes from reputable national and international journals indexed by SINTA, WOS and Scopus; Research must use experimental methods; The data has an average value, sample size and standard deviation (SD) and the research comes from Indonesian and English language journals and the research has r, t, and F values related to the influence of the design thinking-based inquiry training learning model on critical thinking skills. Data source selection technique using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method (Figure 1). From the results of data search, 13 studies that meet the inclusion criteria can be seen in Table 2.

Data Collection

The collection of data sources comes from journal databases, namely Google Scholar databases, Education Resources Information Center (ERIC), Wiley, PLoS ONE, Taylor of Francis and IEEE. The data collection keywords are "model inquiry training learning; Design Thinking", "The Influence of the Inquiry Training Learning Model on the ability to think creatively", and "the influence of the design thinking-based inquiry training model on students' creative thinking ability".

Data Analysis

Data analysis in this study calculated the effect size value of the entire research analyzed. According to Borenstein et al. (2009) Meta-analysis statistical analysis procedure, namely calculating the effect size value of the primary study; conducting heterogeneity tests; checking publication bias; and calculating the p-value to test a hypothesis. Data analysis in this study with the help of JASP application. There are inclusion criteria guided by categories (Cohen et al., 2007) seen in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Categories Effect Size Cohen's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect Size</td>
</tr>
<tr>
<td>0.00 ≤ ≤ 0.20</td>
</tr>
<tr>
<td>0.00 ≤ ≤ 0.80</td>
</tr>
<tr>
<td>D ≥ 0.80</td>
</tr>
</tbody>
</table>

Result and Discussion

In the process of collecting data through the Google Scholar database, ERIC, Wiley, Taylor of Francis, and IEEE obtained 13 studies that met the inclusion criteria related to the design thinking-based inquiry training learning model on students' creative thinking skills. Data that have met the inclusion criteria are analyzed based on the characteristics of the publication code, year of publication, research index, research sample, N, r, t values and effect size shown in Table 2.

Based on Table 2, describes the results of the analysis of 13 studies that meet the inclusion criteria for each study indexed by SINTA, Scopus and Wos. Furthermore, the research samples came from elementary schools, junior high schools, high schools and college students. The sample size (N) in the study
amounted to 997 participants. In addition, the value of effect size analysis from 13 studies based on criteria (Cohen et al., 2007) obtained three effect size (23%) medium criteria and ten effect size (77%) high criteria. The next step is to conduct heterogeneity tests and determine the estimation model. The results of the heterogeneity test can be shown in Tables 3 and 4.

Table 2. 13 Research Meets Inclusion Criteria

<table>
<thead>
<tr>
<th>Publication Code</th>
<th>Sample</th>
<th>N</th>
<th>r</th>
<th>t</th>
<th>F</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Junior School Student</td>
<td>72</td>
<td>0.872</td>
<td>5.054</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Junior School Student</td>
<td>45</td>
<td>2.018</td>
<td>1.905</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>High school student</td>
<td>40</td>
<td>0.783</td>
<td>0.917</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>High school student</td>
<td>128</td>
<td>0.917</td>
<td>1.302</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>Junior School Student</td>
<td>80</td>
<td>2.450</td>
<td>2.14</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>Junior School Student</td>
<td>48</td>
<td>1.302</td>
<td>0.917</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>High school student</td>
<td>38</td>
<td>0.694</td>
<td>0.87</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>Elementary school student</td>
<td>40</td>
<td>9.142</td>
<td>1.30</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>High school student</td>
<td>94</td>
<td>5.806</td>
<td>0.84</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>High school student</td>
<td>112</td>
<td>4.662</td>
<td>0.72</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>Colleger</td>
<td>104</td>
<td>0.974</td>
<td>0.72</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>Colleger</td>
<td>86</td>
<td>0.925</td>
<td>0.72</td>
<td>0.89</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. 13 Research Meets Inclusion Criteria

Based on Table 3, showing the results of the heterogeneity test from 13 studies concluded that the effect size is heterogeneously distributed. Her seen from the value ($p < 0.001; Q = 63,220$) Publication bias serves to determine the presence or absence of bias in meta-analysis research (Yıldırım, 2022; Öztürk et al., 2022). Checking publication bias in research with funnel plots. The results of checking publication bias with Funnel flot effect size are shown in figure 1.

Table 3. Heterogeneity Test Results

<table>
<thead>
<tr>
<th>Q</th>
<th>Df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnibus test of Model Coefficients</td>
<td>63.220</td>
<td>1</td>
</tr>
<tr>
<td>Test of Residual Heterogeneity</td>
<td>414.170</td>
<td>9</td>
</tr>
</tbody>
</table>

Note. p value are approximate

![Plot](image-url)
Figure 1. Funnel plot standard error

Based on figure 1, explaining the results of checking publication bias with funnel plots from 13 analyzed studies is difficult to determine whether the curve is symmetrical or asymmetric. To find out this, it is necessary to do Egger's test to find out the curve shape of the 13 effect size. Egger's test results are shown in Table 4.

Table 4. Egger's Test Results

<table>
<thead>
<tr>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sei</td>
<td>2.841</td>
</tr>
</tbody>
</table>

Based on Table 4, the value ($p < 0.004; z = 2.84$) means that the distribution of the funnel plot is symmetrical. The findings show that in this study there was no publication bias. The next step is to calculate the summary effect size value of the 13 studies analyzed. The results of this summary effect size test aim to determine the influence of the design thinking-based inquiry training learning model on students' creative thinking skills. The summary effect size test results can be shown in Table 5.

Based on Table 5, explaining the results of the summary effect size test obtained values ($r_1 = 0.840; SE = 0.190; Z = 9.433 ; P < 0.001$), then the application of the design thinking-based inquiry training learning model has a high influence on the creative thinking skills of students in Indonesia.

This result is in line with research (Wahyudi et al., 2019) model inquiry training learning can improve students' creative thinking skills. This finding is supported by research (Prime, 2020) inquiry training model can improve students' critical and creative thinking skills in learning. The inquiry training learning model is able to develop problem-solving skills in
students (Turnip et al., 2016). The inquiry training learning model based on design thinking can foster representative thinking skills in learning. Inquiry training learning model students learn on their own in finding a concept or material (Ertikanto, 2017; Ahokoski et al., 2016).

Table 5. Summary Effect Size Test Results

<table>
<thead>
<tr>
<th>Estimates</th>
<th>SE</th>
<th>z</th>
<th>p</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.840</td>
<td>0.190</td>
<td>9.43</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Design thinking-based inquiry training learning model students can learn more creatively and innovatively in solving a problem (Bernard & Różycki, 2020; Hashim et al., 201; Moffett & Cassidy, 2023). Design thinking-based learning students are able to develop innovative thinking to solve a problem (Chahine et al., 2020; Liudmyla et al., 2022). In addition, learning with design thinking helps produce a product that can be utilized in learning activities (Grizioti & Langenhove, 2022; Mccurdy et al., 2020). Therefore, the inquiry training learning model based on design thinking fosters students’ motto in developing creative thinking in student learning in Indonesia.

Conclusion

From the results of this study it can be concluded that the summary effect size value (rE = 0.840; p < 0.001) high effect size category. This finding shows that the inquiry training learning model based on design thinking has a high positive effect on the creative thinking ability of students in Indonesia. The inquiry training learning model based on design thinking students can develop ideas to produce products that are useful in learning activities.

Acknowledgments

Place In research thank you for periodically collaboration i in completing this article. Hopefully it can make a major contribution to the advancement of education in Indonesia.

Author Contributions

All researchers contributed to this research by Yuyun Suprato; Asmawati, Abdul Rahman, Wasito Utomo and Tomi Apra Santosa collected data, coded the data, and analyzed the data statistically and interpreted the data.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

Kreatif. TSCJ, 3(1), 18-27. https://doi.org/10.23887/tscj.v3i1.24661

